CONFORMATIONAL STUDIES XIV. DESTABILIZATION OF CHAIR CONFORMATIONS OF CYCLOHEXANONES

BY t-BUTYL-HYDROXYL AND t-BUTYL-METHOXYL GAUCHE INTERACTIONS.1

Robert D. Stolow, Anthony A. Gallo,² and James L. Marini³

Department of Chemistry, Tufts University, Medford, Massachusetts 02155, U.S.A.

(Received in USA 25th August 1969; received in UK for publication 11th October 1969) Chemical equilibrations of <u>trans</u>- and <u>cis</u>-4-t-buty1-2-methylcyclohexanones (<u>1</u> and <u>2</u>) have shown that <u>2</u> is more stable than <u>1</u>, ΔG^o = -1.7 ± 0.1 kcal/mole at 40^o.^{4,5} The equilibrations le = 2e and 3e = 4e, if exclusively between the chair conformations shown, should give nearly

the same free energy difference. We find for $3 \neq 4$, $\Delta G^{\circ} = -0.13 \pm 0.05$ kcal/mole at 40° (Table I). The large difference between ΔG° for $1 \neq 2$ and ΔG° for $3 \neq 4$, $\Delta \Delta G^{\circ} = (-0.13)$ (-1.7) = 1.6 kcal/mole, clearly demonstrates that conformations significantly more stable than chair 3e must be populated for hydroxyketone 3.

<u>Gauche interactions</u> between <u>trans</u> vicinal groups (such as $C(CH_3)_3$ and OH in 3) can introduce strong destabilization into a chair conformation (such as 3e) relative to nonchair

conformations in which the gauche interaction is relieved (such as $3b_{60}$).¹ That 3e is but a very minor conformation of 3 can be calculated from ΔG° for $3 \neq 4$ (Table I) plus the value for the "2-methyl ketone effect,"⁷ taken as $G_{3e}^{\circ} - G_{4e}^{\circ} = G_{1}^{\circ} - G_{2}^{\circ} = 1.7 \pm 0.1$ kcal/mole at 40° .^{4,5} For hydroxyketone 3 in benzene solution at 40° , the population of chair 3e must be less than 94.⁸ It is unlikely that chair 3a, with <u>t</u>-butyl axial, could be the major conformation of hydroxyketone 3.⁹ Therefore, we conclude that <u>nonchair conformations predominate for</u> <u>hydroxyketone 3</u> in benzene solution. Further evidence supporting this conclusion may be derived from the striking similarity between results for hydroxyketones 3 and 8 (Tables I and II). There is no doubt that for hydroxyketone 8 one would expect nonchair conformations to predominate.

TΑ	R	LE.	T
**			-

••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······		
т, °С	* 4	ΔG° , cal/mole		
40.0 ± 0.3	55.2 ± \$	-130 ± 50		
80.9	55.5	-155		
100.6	55.2	-155		
121.4	56.4	-202		

EQUILIBRATION OF $3 \rightleftharpoons 4$ IN BENZENE SOLUTION^a

 $5\alpha-\underline{t}-Buty1-2\alpha-methy1-4\beta-hydroxycyclohexanone (3), mp 50.5-52.0°, and <math>5\alpha-\underline{t}-buty1-2\beta-methy1-4\beta-hydroxycyclohexanone (4), mp 98.8-99.1°, were equilibrated by the procedure of ref. 6.$

TABLE II		TABLE III			
EQUILIBRATIO	NS ⁶ OF 8 ₱ 9 I	N BENZENE SOLUTION ^a	EQUILIBRATION	5 ⁶ OF <u>10</u> ≠ <u>11</u>	IN BENZENE SOLUTIONa
<u>T, °C</u>	<u> </u>	ΔG°, cal/mole ^b	<u>т, °C</u>	\$ 10	ΔG°, cal/mole ^b
30.0 ± 0.3	51.5 ± 0.6	36 ± 18	40.06 ± 0.05	74.2 ± 0.3	657 ± 12
65.0	51.9	51	60.08	72.5	641
100.0	52.1	62	80.27	71.9	660
^a 2α,5α-di- <u>t</u>	-Buty1-4β-hydro	xycyclohexanone (8)	100.71	70.4	643
mp 142.8-1	43.3° and 2β,5α	-di- <u>t</u> -butyl-4β-	^a 2α,5α-di- <u>t</u> -	Buty1-4β-methox	xycyclohexanone (10);
hydroxycyc	lohexanone (9),	mp 158.7-158.9°.	2β,5α-di- <u>t</u> -	buty1-4β-methox	xycyclohexanone (11).
^b $\Delta H = -80 \pm$	150 cal/mole,∆	$S = -0.4 \pm 0.5$ eu.	^b $\Delta H = 690 \pm$	150 cal/mole, A	$AS = 0.1 \pm 0.4 eu.$

Equilibrations of <u>cis-</u> and <u>trans-2,5-di-t-butylcyclohexanones</u> (6 and 7) have shown that 7 is more stable than 6, $\Delta G^{\circ} = 1.83 \pm 0.06$ kcal/mole at 30° .¹⁰ However, substitution of a hydroxyl group at C-4 of 6 and 7 to give 8 and 9, reduces this free energy difference to $\Delta G^{\circ} = 0.04$ kcal/mole at 30° (Table II). The value, $\Delta \Delta G^{\circ} = (+0.04) - (-1.83) = 1.87$ kcal/mole at 30° , limits the population of 8 to < 5%.¹¹

Substitution of a methoxyl group at C-4 of 6 and 7 to give 10 and 11, produces an even larger change. Although 11 can exist in an all equatorial chair conformation (11e), 10 is 660 cal/mole more stable than 11 (Table III). Therefore, it is clear that chair lie is strongly destabilized by its <u>t</u>-butyl-methoxyl gauche interaction. The value $\Delta\Delta G^{\circ}$, (+0.66)-(-1.79) = 2.45 kcal/mole limits the population of 10e to < 2.5% at 40°.¹¹ The free energy difference ($\Delta\Delta G^{\circ}$ = +0.66 - 0.04 = 0.6 kcal/mole) between 8 \neq 9 and 10 \neq 11 suggests that the methoxy-<u>t</u>-butyl gauche interaction in 11e is greater than the hydroxyl-<u>t</u>-butyl gauche interaction in 9e.

The results are consistent with the predominance of nonchair conformations for ketones 3, 8, and 10. Even for ketones 4, 9, and 11, each all-equatorial chair conformation is destabilized by a strong gauche interaction, and significant populations of nonchair conformations cannot be excluded.¹²

Acknowledgment: We wish to thank the National Science Foundation and the Research Corporation for support of this work. We gratefully acknowledge support in part by Public Health Service Grant GM-08813 from the National Institutes of Health.

REFERENCES

- 1. Paper XIII. R. D.Stolow, T. Groom, and D. I. Lewis, Tetrahedron Letters, 913 (1969).
- 2. National Science Foundation Trainee (1965-1968).
- 3. NDEA Title IV Fellow (1965-1969).
- 4. N. D. Cotterill and M. J. T. Robinson, Tetrahedron, 20, 765, 777 (1964).
- N. L. Allinger, H. M. Blatter, L. A. Freiberg, and F. M. Karkowski, J. Am. Chem. Soc., 88, 2999 (1966).
- 6. R. D. Stolow and T. Groom, Tetrahedron Letters, 4069 (1968).
- E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, <u>Conformational Analysis</u>, Interscience Publishers, Inc., New York, N. Y., 1965, p. 113
- 8. We have derived the equation, $(1 N_{\underline{3}\underline{e}})\ln[(1 N_{\underline{3}\underline{e}})/N_{\underline{3}\underline{e}}] (1 N_{\underline{4}\underline{e}})\ln[(1 N_{\underline{4}\underline{e}})/N_{\underline{4}\underline{e}}] = [(G_{\underline{3}\underline{2}}^{\circ} G_{\underline{4}\underline{2}}^{\circ}) (G_{\underline{3}}^{\circ} G_{\underline{4}\underline{2}}^{\circ})]/RT$, and by use of an IBM 1130 computer and a program adapted for this purpose by John and Virginia Morris, solved for the maximum possible value of $N_{\underline{3}\underline{e}}$, the mole fraction of $\underline{3}\underline{e}$, 0.08 ± 0.01 at 40°. Considering possible values for $N_{\underline{4}\underline{e}}$ at 40°, if $1 \ge N_{\underline{4}\underline{e}} \ge 0.5$, then $N_{\underline{3}\underline{e}}$ would be 0.07 ± 0.02; but if $0 < N_{\underline{4}\underline{e}} < 0.5$, then $N_{\underline{3}\underline{e}} < 0.07$.
- 9. The population of 5a is reported¹ to be small (10 ± 10%) and introduction of a methyl group at C-2 of 5 to give 3 would be expected to change the energies of conformations $5t_{30}$, $5b_{60}$, $5t_{90}$, and 5a comparably. By comparison with 5, a conservative limit of 20 ± 20% may be set for the expected population of 3a. Thus, 3a, with t-butyl axial, may be more stable than 3e, but nonchair conformations in the range $3t_{30}$ to $3t_{90}$ probably predominate for 3.
- 10. D. Pasto, private communication, Feb. 20, 1969, found $G_{0}^{\circ} G_{7}^{\circ} = 1.83$ kcal/mole at 30° (or 1.79 at 40°).
- 11. The limit was set by assuming $(G_{6}^{\circ} G_{7}^{\circ}) = (G_{6e}^{\circ} G_{7e}^{\circ}) = (G_{8e}^{\circ} G_{9e}^{\circ}) = (G_{10e}^{\circ} G_{11e}^{\circ})$, and solving an equation analogous to that in ref. 8 above. The populations of g_{2e} and 10e are probably much less than the limits set here, since the population of chair g_{2e} is expected to be small, so that $(G_{6}^{\circ} - G_{7}^{\circ}) < (G_{6e}^{\circ} - G_{7e}^{\circ})$.
- 12. The near zero values of ΔS observed for equilibrations $\frac{8}{2} \neq \frac{9}{2}$ and $\frac{10}{10} \neq \frac{11}{11}$ (Tables II and III) contrast sharply with $\Delta S = -3.8$ eu for the parent ketones, $\frac{6}{2} \neq \frac{7}{2}$.¹⁰ Ketones $\frac{6}{2}$, $\frac{8}{2}$, and $\frac{10}{10}$ probably exist as conformational mixtures. If 7, 9, and $\frac{11}{11}$, each existed only in chair conformation e, then values like -3.8 eu might be expected in each case. But the results, $\Delta S = -0.4 \pm 0.5$ for $\frac{8}{2} \neq \frac{9}{2}$, and 0.1 ± 0.4 eu for $\frac{10}{10} \neq \frac{11}{11}$, suggest that $\frac{9}{2}$ and lie may not be the only populated conformations of 9 and 11.